Mechanism of thermal decomposition of carbamoyl phosphate and its stabilization by aspartate and ornithine transcarbamoylases.

نویسندگان

  • Qin Wang
  • Jiarong Xia
  • Victor Guallar
  • Goran Krilov
  • Evan R Kantrowitz
چکیده

Carbamoyl phosphate (CP) has a half-life for thermal decomposition of <2 s at 100 degrees C, yet this critical metabolic intermediate is found even in organisms that grow at 95-100 degrees C. We show here that the binding of CP to the enzymes aspartate and ornithine transcarbamoylase reduces the rate of thermal decomposition of CP by a factor of >5,000. Both of these transcarbamoylases use an ordered-binding mechanism in which CP binds first, allowing the formation of an enzyme.CP complex. To understand how the enzyme.CP complex is able to stabilize CP we investigated the mechanism of the thermal decomposition of CP in aqueous solution in the absence and presence of enzyme. By quantum mechanics/molecular mechanics calculations we show that the critical step in the thermal decomposition of CP in aqueous solution, in the absence of enzyme, involves the breaking of the C O bond facilitated by intramolecular proton transfer from the amine to the phosphate. Furthermore, we demonstrate that the binding of CP to the active sites of these enzymes significantly inhibits this process by restricting the accessible conformations of the bound ligand to those disfavoring the reactive geometry. These results not only provide insight into the reaction pathways for the thermal decomposition of free CP in an aqueous solution but also show why these reaction pathways are not accessible when the metabolite is bound to the active sites of these transcarbamoylases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbamoyl phosphate compartmentation in Neurospora: histochemical localization of aspartate and ornithine transcarbamoylases.

Carbamoyl phosphate is required for arginine and pyrimidine synthesis. In the arginine pathway, it is used in the ornithine transcarbamoylase (EC 2.1.2.1) reaction; in the pyrimidine pathway, it is used in the aspartate transcarbamoylase (EC 2.1.3.2) reaction. In Neurospora crassa, two pathway-specific enzymes catalyze the synthesis of carbamoyl phosphate, and two path-specific pools of carbamo...

متن کامل

Function of arginase in lactating mammary gland.

The potential for a considerable formation of ornithine exists in lactating mammary gland because of its arginase content. Late in lactation arginase reaches an activity in the gland higher than that present in any rat tissue except liver. Occurrence of the urea cycle can be excluded since two enzymes for the further reaction of ornithine in the cycle, carbamoyl phosphate synthetase I and ornit...

متن کامل

Metabolic channelling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus: dynamic enzyme-enzyme interactions involved in the formation of the channelling complex.

Protection of thermolabile metabolites and coenzymes is a somewhat neglected but essential aspect of the molecular physiology of hyperthermophiles. Detailed information about the mechanisms used by thermophiles to protect these thermolabile metabolites and coenzymes is still scarce. A case in point is CP (carbamoyl phosphate), a precursor of pyrimidines and arginine, which is an extremely labil...

متن کامل

Arginine-specific Carbamoyl Phosphate Metabolism in Mitochondria

Citrulline is synthesized in mitochondria of Neurospora crassa from ornithine and carbamoyl phosphate. In mycelia grown in minimal medium, carbamoyl phosphate limits citrulline (and arginine) synthesis. Addition of arginine to such cultures reduces the availability of intramitochondrial ornithine, and ornithine then limits citrulline synthesis. We have found that for some time after addition of...

متن کامل

Site of Synthesis of the Enzymes of the Pyrimidine Biosynthetic Pathway in Oat (Avena sativa L.) Leaves.

Heat-bleached oat (Avena sativa L. cv Porter) leaves lacking 70S chloroplast ribosomes have been used to demonstrate that four chloroplast-localized enzymes of pyrimidine nucleotide biosynthesis: aspartate carbamoyl-transferase, dihydroorotase, orotidine phosphoribosyl-transferase, and orotidine-5'-phosphate decarboxylase, are synthesized on cytoplasmic ribosomes. Two other chloroplast enzymes,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 44  شماره 

صفحات  -

تاریخ انتشار 2008